宇🜗🂎历三⛮🝵🏢年的时候,离宗和连宗很罕见的达成了☁🟧🟢全新的共识。
一个公式,在🃮🛋离宗算理和连宗算理之中,具备完全一致的内蕴的话,那么,就可以说,这个公式,具🗂备“绝对性”。
这种🆓🏈“绝对性”,毫无疑问,给予了离宗某种“希望”。
对于他们来说,这简直就是不周🞜🕃之算的灭世一击下,所能找到的最后救赎与唯一福音。
“绝对性”的存在,或许就是在表明,数学实体是在不🞀同的数学公理♖🈘系🔫统里面普遍存在的。
而如果是这样的🞉话,这个数学实体本身,或许就具有“实际完备”的性质。
这是他们最后的希望了。
或许他们需要寻🞉找到一条新的道路,来探索出☁🟧🟢这个数学实体的性质。
在这一点上,冯落衣与歌庭派的目的是出奇的一致💉。
他们甚至暂且放下了些🔐⛝许分歧,🞜🕃共同探索这一领🕄🕹域。
而在这一过程之中,海霆真人也🞜🕃终🝝🌌于崭露🃌🖔头角。
自从连宗证明直觉主义逻辑不比歌庭派🀥⚢的经典逻辑安全之后,他就好像变了个人一样,沉默🍬而寡言。
而在黎京首创之🞉中,他自🁅🃕闭的倾向就更严重了。
但是,这并不🃮🛋妨碍他作为一个算学家,继续发光发热🌫🂅🌖。🞀
他从苏君宇的连续统研究之中受🞜🕃到启发,引入了冯落衣在无限公理中研究良基🝠集合的成果,创立了全新的流派构造主义。
在某个理论内,以有穷个符号,所定义之一切实体,直到反🙎🆭射序☍♯列的高🔫度遍历“所有序数的序数”,便是一个可构造类。
而可构造公理,便是宣告,良基序列下合法集合所构成的总体,与“可🔫构造性集合”♙🈳,是相等的😜。
他继承了算君“算学是被构造产物”的思想,却容纳了算君所厌☍♯恶的集合论,并且在冯落衣良基集合的基础上完成了初步的安全性证明。
定义即构造,构造即证明,证明即路秩。
也正是因为如此,他在算器理论也小有突破,进入千机阁的视野之中♖🈘。
歌庭派对此有些惊恐。
冯落衣⛮🝵🏢与图灵的存在【或许还可以算上王崎】,使得千机阁这个万法门分支门派,一直都是离宗的后花园。